Учредитель - администрация г. Рязани муниципальное бюджетное общеобразовательное учреждение «Школа №72 с углубленным изучением отдельных предметов»

«УТВЕРЖДАЮ» «Согласовано» «Рассмотрено» Директор МБОУ «Школа №72 Заместитель директора по на заседании МО с углубленным изучением учебной работе естественноотдельных учебных математического цикла /О.В. Хавронина/ предметов» Протокол № 18.08 .2017 /Е.В.Щепотина/ Руководитель MO OM /А.А.Терентьева/

Рабочая программа по физике 10-11 класс

Уровень образования: 10 Б класс (универсальный профиль, физико-математическая группа)

Количество часов: 136 в год

Учитель: Хвостова О.Н.

Программа разработана на основе основной образовательной программы среднего общего образования МБОУ «Школа № 72 с углубленным изучением отдельных учебных предметов»

Учебник « Физика.» 10 класс под ред. А.А Пинского, О.Ф. Кабардина; изд-во «Просвещение» - М.: 2017 г.

Пояснительная записка.

Программа разработана на основе основной образовательной программы среднего общего образования МБОУ «Школа № 72 с углубленным изучением отдельных учебных предметов»

В соответствии с учебным планом МБОУ «Школа № 72 с углубленным изучением отдельных учебных предметов» на преподавание физики в 10 Б классе отводится 4 часа в неделю (136 часов в год).

Количество контрольных работ -8.

Количество лабораторных работ -5.

Формы контроля – самостоятельные работы, лабораторные работы, контрольные работы, тестирование.

Программа ориентирована на:

- реализацию деятельностного подхода;
- обучение ключевым компетенциям (готовности учащихся использовать усвоенные знания, умения и способы деятельности в реальной жизни для решения практических задач) и привитие общих умений, навыков, способов деятельности как существенных элементов культуры, являющихся необходимым условием развития и социализации учащихся.

Учебно-методические материалы

- 1. Учебник « Физика.» 10 класс под ред. А.А Пинского, О.Ф. Кабардина; изд-во «Просвещение» М.: 2017 г.Физика. Задачник. 9-11 классы. А.П. Рымкевич.
- 2. Компьютерные обучающие программы «Живая физика», «Открытая физика».
- 3. Поурочные разработки по физике. 10 класс. В.А. Волков.
- 4. Демонстрационный эксперимент по физике в средней школе. А.А. Покровский.
- 5. Физика. 10 класс. Дидактические материалы. А.Е. Марон, Е.А. Марон.

Общая характеристика учебного предмета.

Программа учебного предмета «Физика» направлена на формирование у обучающихся функциональной грамотности и метапредметных умений через выполнение исследовательской и практической деятельности.

В системе естественно-научного образования физика как учебный предмет занимает важное место в формировании научного мировоззрения и ознакомления обучающихся с методами научного познания окружающего мира, а также с физическими основами современного производства и бытового технического окружения человека; в формировании собственной позиции по отношению к физической информации, полученной из разных источников.

Успешность изучения предмета связана с овладением основами учебно-исследовательской деятельности, применением полученных знаний при решении практических и теоретических задач.

В соответствии с ФГОС СОО образования физика может изучаться на углубленном

уровне.

Изучение физики на углубленном уровне включает расширение предметных результатов и содержание, ориентированное на подготовку к последующему профессиональному образованию.

Изучение предмета на углубленном уровне позволяет сформировать у обучающихся физическое мышление, умение систематизировать и обобщать полученные знания, самостоятельно применять полученные знания для решения практических и учебно-исследовательских задач; умение анализировать, прогнозировать и оценивать с позиции экологической безопасности последствия бытовой и производственной деятельности человека, связанной с использованием источников энергии.

В основу изучения предмета «Физика» на углубленном уровне в части формирования у обучающихся научного мировоззрения, освоения общенаучных методов познания, а также практического применения научных знаний заложены межпредметные связи в области естественных, математических и гуманитарных наук.

Планируемые предметные результаты освоения ООП по физике

В результате изучения учебного предмета «Физика» на уровне среднего общего образования:

Выпускник на углубленном уровне научится:

- объяснять и анализировать роль и место физики в формировании современной научной картины мира, в развитии современной техники и технологий, в практической деятельности людей;
 - характеризовать взаимосвязь между физикой и другими естественными науками;
- характеризовать системную связь между основополагающими научными понятиями: пространство, время, материя (вещество, поле), движение, сила, энергия;
- понимать и объяснять целостность физической теории, различать границы ее применимости и место в ряду других физических теорий;
- владеть приемами построения теоретических доказательств, а также прогнозирования особенностей протекания физических явлений и процессов на основе полученных теоретических выводов и доказательств;
- самостоятельно конструировать экспериментальные установки для проверки выдвинутых гипотез, рассчитывать абсолютную и относительную погрешности;
 - самостоятельно планировать и проводить физические эксперименты;
- решать практико-ориентированные качественные и расчетные физические задачи с опорой как на известные физические законы, закономерности и модели, так и на тексты с избыточной информацией;
- объяснять границы применения изученных физических моделей при решении физических и межпредметных задач;
- выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов;
- характеризовать глобальные проблемы, стоящие перед человечеством: энергетические, сырьевые, экологические, и роль физики в решении этих проблем;
- объяснять принципы работы и характеристики изученных машин, приборов и технических устройств;

– объяснять условия применения физических моделей при решении физических задач, находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний, так и при помощи методов оценки.

Выпускник на углубленном уровне получит возможность научиться:

- проверять экспериментальными средствами выдвинутые гипотезы, формулируя цель исследования, на основе знания основополагающих физических закономерностей и законов;
- описывать и анализировать полученную в результате проведенных физических экспериментов информацию, определять ее достоверность;
- понимать и объяснять системную связь между основополагающими научными понятиями: пространство, время, материя (вещество, поле), движение, сила, энергия;
- решать экспериментальные, качественные и количественные задачи олимпиадного уровня сложности, используя физические законы, а также уравнения, связывающие физические величины;
- анализировать границы применимости физических законов, понимать всеобщий характер фундаментальных законов и ограниченность использования частных законов;
- формулировать и решать новые задачи, возникающие в ходе учебно-исследовательской и проектной деятельности;
- усовершенствовать приборы и методы исследования в соответствии с поставленной задачей;
- использовать методы математического моделирования, в том числе простейшие статистические методы для обработки результатов эксперимента.

Содержание учебного предмета

Углубленный уровень

Физика и естественно-научный метод познания природы

Физика — фундаментальная наука о природе. Научный метод познания мира. Взаимосвязь между физикой и другими естественными науками. Методы научного исследования физических явлений. Погрешности измерений физических величин. Моделирование явлений и процессов природы. Закономерность и случайность. Границы применимости физического закона. Физические теории и принцип соответствия. Роль и место физики в формировании современной научной картины мира, в практической деятельности людей. Физика и культура.

Механика

Предмет и задачи классической механики. Кинематические характеристики механического движения. Модели тел и движений. Равноускоренное прямолинейное движение, свободное падение. движение тела, брошенного под углом к горизонту. Движение точки по окружности. Поступательное и вращательное движение твердого тела.

Взаимодействие тел. Принцип суперпозиции сил. Инерциальная система отсчета. Законы механики Ньютона. Законы Всемирного тяготения, Гука, сухого трения. Движение небесных тел и их искусственных спутников. Явления, наблюдаемые в неинерциальных системах отсчета.

Импульс силы. Закон изменения и сохранения импульса. Работа силы. Закон изменения и сохранения энергии.

Равновесие материальной точки и твердого тела. Условия равновесия твердого тела в инерциальной системе отсчета. Момент силы. Равновесие жидкости и газа. Движение жидкостей и газов. Закон сохранения энергии в динамике жидкости и газа.

Механические колебания и волны. Амплитуда, период, частота, фаза колебаний. Превращения энергии при колебаниях. *Вынужденные колебания*, *резонанс*.

Поперечные и продольные волны. Энергия волны. Интерференция и дифракция волн. Звуковые волны.

Молекулярная физика и термодинамика

Предмет и задачи молекулярно-кинетической теории (МКТ) и термодинамики.

Экспериментальные доказательства МКТ. Абсолютная температура как мера средней кинетической энергии теплового движения частиц вещества. Модель идеального газа. Давление газа. Связь между давлением и средней кинетической энергией поступательного теплового движения молекул идеального газа.

Модель идеального газа в термодинамике: уравнение Менделеева–Клапейрона, выражение для внутренней энергии. Закон Дальтона. Газовые законы.

Агрегатные состояния вещества. Фазовые переходы. Преобразование энергии в фазовых переходах. Насыщенные и ненасыщенные пары. Влажность воздуха. Модель строения жидкостей. *Поверхностное натижение*. Модель строения твердых тел. *Механические свойства твердых тел.* Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии. Первый закон термодинамики. Адиабатный процесс. *Второй закон термодинамики*.

Преобразования энергии в тепловых машинах. КПД тепловой машины. Цикл Карно. Экологические проблемы теплоэнергетики.

Электродинамика

Предмет и задачи электродинамики. Электрическое взаимодействие. Закон сохранения электрического заряда. Закон Кулона. Напряженность и потенциал электростатического поля. Принцип суперпозиции электрических полей. Разность потенциалов. Проводники и диэлектрики в электростатическом поле. Электрическая емкость. Конденсатор. Энергия электрического поля.

Постоянный электрический ток. Электродвижущая сила (ЭДС). Закон Ома для полной электрической цепи. Электрический ток в металлах, электролитах, полупроводниках, газах и вакууме. Плазма. Электролиз. Полупроводниковые приборы. Сверхпроводимость.

Магнитное поле. Вектор магнитной индукции. Принцип суперпозиции магнитных полей. Магнитное поле проводника с током. Действие магнитного поля на проводник с током и движущуюся заряженную частицу. Сила Ампера и сила Лоренца.

Поток вектора магнитной индукции. Явление электромагнитной индукции. Закон электромагнитной индукции. ЭДС индукции в движущихся проводниках. Правило Ленца. Явление самоиндукции. Индуктивность. Энергия электромагнитного поля. Магнитные свойства вещества.

Электромагнитные колебания. Колебательный контур. Свободные электромагнитные колебания. Вынужденные электромагнитные колебания. Резонанс. Переменный ток. Конденсатор и катушка в цепи переменного тока. Производство, передача и потребление электрической энергии. Элементарная теория трансформатора.

Электромагнитное поле. Вихревое электрическое поле. Электромагнитные волны. Свойства элек-

тромагнитных волн. Диапазоны электромагнитных излучений и их практическое применение. Принципы радиосвязи и телевидения.

Геометрическая оптика. Прямолинейное распространение света в однородной среде. Законы отражения и преломления света. Полное внутреннее отражение. Оптические приборы.

Волновые свойства света. Скорость света. Интерференция света. Когерентность. Дифракция света. Поляризация света. Дисперсия света. Практическое применение электромагнитных излучений.

Основы специальной теории относительности

Инвариантность модуля скорости света в вакууме. Принцип относительности Эйнштейна. *Пространство и время в специальной теории относительности*. Энергия и импульс свободной частицы. Связь массы и энергии свободной частицы. Энергия покоя.

Квантовая физика. Физика атома и атомного ядра

Предмет и задачи квантовой физики.

Тепловое излучение. Распределение энергии в спектре абсолютно черного тела.

Гипотеза М. Планка о квантах. Фотоэффект. Опыты А.Г. Столетова, законы фотоэффекта. Уравнение А. Эйнштейна для фотоэффекта.

Фотон. *Опыты П.Н. Лебедева и С.И. Вавилова*. Гипотеза Л. де Бройля о волновых свойствах частиц. Корпускулярно-волновой дуализм. *Дифракция электронов*. Давление света. Соотношение неопределенностей Гейзенберга.

Модели строения атома. Объяснение линейчатого спектра водорода на основе квантовых постулатов Н. Бора. Спонтанное и вынужденное излучение света.

Состав и строение атомного ядра. Изотопы. Ядерные силы. Дефект массы и энергия связи ядра.

Закон радиоактивного распада. Ядерные реакции, реакции деления и синтеза. Цепная реакция деления ядер. Ядерная энергетика. Термоядерный синтез.

Элементарные частицы. Фундаментальные взаимодействия. Ускорители элементарных частиц.

Строение Вселенной

Применимость законов физики для объяснения природы космических объектов. Солнечная система. Звезды и источники их энергии. Классификация звезд. Эволюция Солнца и звезд.

Галактика. Другие галактики. Пространственно-временные масштабы наблюдаемой Вселенной. Представление об эволюции Вселенной. *Темная материя и темная энергия*.

Поурочно-тематическое планирование по физике 10 Б класс

на 2017 – 2018 учебный год

учителя МБОУ

«Школа № 72 с углубленным изучением отдельных учебных предметов» Хвостовой О.Н.

Количество часов:

Всего – 136 часов, в неделю – 4 часа

№	Тема раздела, урока	УМК
урока		
	Тема 1. Физика и естественно-научный метод познания природы (3ч)	
1	Предмет и задачи классической механики. Физика – фундаментальная наука о природе. Научный метод познания мира. Взаимосвязь между физикой и другими естественными науками.	§ 1
2	Предмет и задачи классической механики. Методы научного исследования физических явлений. Погрешности измерений физических величин. Моделирование явлений и процессов природы. Закономерность и случайность. Границы применимости физического закона.	§ 2
3	Физические теории и принцип соответствия. Роль и место физики в формировании современной научной картины мира, в практической деятельности людей. Физика и культура.	§ 3-6
	Тема 2. Механика (43 ч)	1
4	Механическое движение и способы его описания. Материальная точка как пример физической модели. Предмет и задачи классической механики. Кинематические характеристики механического движения. Модели тел и движений.	§ 7
5	Равноускоренное прямолинейное движение	§ 7
6	Свободное падение	§ 7
7	Движение тела, брошенного под углом к горизонту	§ 7
8	Уравнения прямолинейного равномерного и равноускоренного движения.	§ 7
9	Равноускоренное прямолинейное движение. Решение задач	§ 7
10	Движение точки по окружности.	§ 8
11	Движение точки по окружности. Решение задач	§ 8
12	Движение точки по окружности. Решение задач	§ 6-8
13	Контрольная работа № 1 по теме: «Кинематика»	§ 6-8
14	Взаимодействие тел. Принцип суперпозиции сил. Инерциальная система отсчета. Законы механики Ньютона.	§ 9
15	Закон Гука	§ 9
16	Закон сухого трения	§ 9

17	Решение задач по теме « Законы Ньютона».	§ 9
18	Решение задач по теме «Законы Ньютона».	§ 9
19	Решение задач по теме «Законы Ньютона».	§ 9
20	Решение задач по теме «Законы Ньютона».	§ 9.
21	Лабораторная работа №1.	§ 9
	«Измерение сил и ускорений».	
22	Закон всемирного тяготения.	§ 9
23	Закон всемирного тяготения. Решение задач	§ 10
24	Решение задач. Закон всемирного тяготения.	§ 10
25	Движение небесных тел и их искусственных спутников.	§ 10
26	Явления, наблюдаемые в неинерциальных системах отсчета.	§ 11
27	Поступательное и вращательное движение твердого тела.	§ 12
28	Равновесие материальной точки и твердого тела. Условия равновесия твердого тела в инерциальной	§ 13
	системе отсчета. Момент силы. Равновесие жидкости и газа. Движение жидкостей и газов.	
29	Контрольная работа № 2 по теме: «Динамика»	§ 10-13
30	Импульс силы. Закон изменения и сохранения импульса.	§ 14
31	Решение задач. Закон изменения и сохранения импульса.	§ 14
32	Решение задач. Закон изменения и сохранения импульса.	§ 14
33	Решение задач. Закон изменения и сохранения импульса.	§ 14
34	Лабораторная работа №2 «Измерение импульса»	§ 15
35	Работа силы.	§ 16
36	Закон изменения и сохранения энергии.	§ 16
37	Решение задач. Закон изменения и сохранения энергии.	§ 16
38	Решение задач. Закон изменения и сохранения энергии.	§ 16

39	Закон сохранения энергии в динамике жидкости и газа.	§ 16
40	Решение задач. Закон изменения и сохранения энергии.	§ 16
41	Механические колебания. Свободные и вынужденные колебания. Амплитуда, период, частота, фаза колебаний.	§ 17
42	Превращения энергии при колебаниях. Резонанс.	§ 17
43	Механические волны. Поперечные и продольные волны. Энергия волны. Интерференция и дифракция волн. Звуковые волны.	§ 18
44	Решение задач. Механические колебания	§ 18
45	Решение задач. Механические волны.	§ 18
46	Контрольная работа № 3 по теме: «Механика»	§ 7- 18
	Тема 3. Молекулярная физика. Термодинамика (28 ч)	
	<u> </u>	
47	3.1 Основы молекулярно-кинетической теории (17 ч)	Le 10
47	3.1 Основы молекулярно-кинетической теории (17 ч) Предмет и задачи молекулярно-кинетической теории (МКТ) и термодинамики.	§ 19
48	3.1 Основы молекулярно-кинетической теории (17 ч) Предмет и задачи молекулярно-кинетической теории (МКТ) и термодинамики. Экспериментальные доказательства молекулярно-кинетической теории.	§ 20
	3.1 Основы молекулярно-кинетической теории (17 ч) Предмет и задачи молекулярно-кинетической теории (МКТ) и термодинамики. Экспериментальные доказательства молекулярно-кинетической теории. Модель идеального газа. Давление газа. Связь между давлением идеального газа и средней кинетиче-	
48 49	3.1 Основы молекулярно-кинетической теории (17 ч) Предмет и задачи молекулярно-кинетической теории (МКТ) и термодинамики. Экспериментальные доказательства молекулярно-кинетической теории. Модель идеального газа. Давление газа. Связь между давлением идеального газа и средней кинетической энергией теплового движения его молекул. Закон Дальтона.	§ 20 § 21
48	3.1 Основы молекулярно-кинетической теории (17 ч) Предмет и задачи молекулярно-кинетической теории (МКТ) и термодинамики. Экспериментальные доказательства молекулярно-кинетической теории. Модель идеального газа. Давление газа. Связь между давлением идеального газа и средней кинетиче-	§ 20
48 49	3.1 Основы молекулярно-кинетической теории (17 ч) Предмет и задачи молекулярно-кинетической теории (МКТ) и термодинамики. Экспериментальные доказательства молекулярно-кинетической теории. Модель идеального газа. Давление газа. Связь между давлением идеального газа и средней кинетической энергией теплового движения его молекул. Закон Дальтона.	§ 20 § 21
48 49	3.1 Основы молекулярно-кинетической теории (17 ч) Предмет и задачи молекулярно-кинетической теории (МКТ) и термодинамики. Экспериментальные доказательства молекулярно-кинетической теории. Модель идеального газа. Давление газа. Связь между давлением идеального газа и средней кинетической энергией теплового движения его молекул. Закон Дальтона. Абсолютная температура. Температура как мера средней кинетической энергии теплового движения	§ 20 § 21
48 49 50	3.1 Основы молекулярно-кинетической теории (17 ч) Предмет и задачи молекулярно-кинетической теории (МКТ) и термодинамики. Экспериментальные доказательства молекулярно-кинетической теории. Модель идеального газа. Давление газа. Связь между давлением идеального газа и средней кинетической энергией теплового движения его молекул. Закон Дальтона. Абсолютная температура. Температура как мера средней кинетической энергии теплового движения частиц.	§ 20 § 21 § 22
48 49 50 51	3.1 Основы молекулярно-кинетической теории (17 ч) Предмет и задачи молекулярно-кинетической теории (МКТ) и термодинамики. Экспериментальные доказательства молекулярно-кинетической теории. Модель идеального газа. Давление газа. Связь между давлением идеального газа и средней кинетической энергией теплового движения его молекул. Закон Дальтона. Абсолютная температура. Температура как мера средней кинетической энергии теплового движения частиц. Модель идеального газа в термодинамике: уравнение Менделеева—Клапейрона	§ 20 § 21 § 22 § 23
48 49 50 51 52	3.1 Основы молекулярно-кинетической теории (17 ч) Предмет и задачи молекулярно-кинетической теории (МКТ) и термодинамики. Экспериментальные доказательства молекулярно-кинетической теории. Модель идеального газа. Давление газа. Связь между давлением идеального газа и средней кинетической энергией теплового движения его молекул. Закон Дальтона. Абсолютная температура. Температура как мера средней кинетической энергии теплового движения частиц. Модель идеального газа в термодинамике: уравнение Менделеева—Клапейрона Решение задач. Уравнение Менделеева—Клапейрона, выражение для внутренней энергии.	 § 20 § 21 § 22 § 23 § 23
48 49 50 51 52 53	З.1 Основы молекулярно-кинетической теории (17 ч) Предмет и задачи молекулярно-кинетической теории (МКТ) и термодинамики. Экспериментальные доказательства молекулярно-кинетической теории. Модель идеального газа. Давление газа. Связь между давлением идеального газа и средней кинетической энергией теплового движения его молекул. Закон Дальтона. Абсолютная температура. Температура как мера средней кинетической энергии теплового движения частиц. Модель идеального газа в термодинамике: уравнение Менделеева—Клапейрона Решение задач. Уравнение Менделеева—Клапейрона, выражение для внутренней энергии. Газовые законы.	 § 20 § 21 § 22 § 23 § 23 § 24
48 49 50 51 52 53 54	З.1 Основы молекулярно-кинетической теории (17 ч) Предмет и задачи молекулярно-кинетической теории (МКТ) и термодинамики. Экспериментальные доказательства молекулярно-кинетической теории. Модель идеального газа. Давление газа. Связь между давлением идеального газа и средней кинетической энергией теплового движения его молекул. Закон Дальтона. Абсолютная температура. Температура как мера средней кинетической энергии теплового движения частиц. Модель идеального газа в термодинамике: уравнение Менделеева—Клапейрона Решение задач. Уравнение Менделеева—Клапейрона, выражение для внутренней энергии. Газовые законы. Решение задач. Газовые законы.	 § 20 § 21 § 22 § 23 § 23 § 24 § 24

58	Решение задач. Газовые законы.	§ 24
59	Агрегатные состояния вещества. Фазовые переходы. Преобразование энергии в фазовых переходах.	§ 26
	Насыщенные и ненасыщенные пары. Влажность воздуха.	
60	Модель строения жидкостей. Поверхностное натяжение.	§ 27,28,29
61	Модель строения твердых тел. Механические свойства твердых тел. Лабораторная работа № 3	§ 30
	«Наблюдение процесса роста кристаллов»	
62	Повторительно-обобщающий урок по теме: «МКТ»	§ 30 -33
63	Контрольная работа № 4 по теме: «МКТ»	§ 19- 33
64	Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии.	§ 34
65	Первый закон термодинамики. Решение задач.	§ 35
66	Работа при изменении объема газа. Решение задач	§ 36
67	Применение первого закона термодинамики к различным процессам. Решение задач.	§ 37
68	Адиабатный процесс.	§ 38
69	Решение задач.	§ 38
70	Преобразования энергии в тепловых машинах. КПД тепловой машины. Цикл Карно.	§ 39
71	Решение задач.	§ 34-39
72	Второй закон термодинамики.	§ 40
73	Экологические проблемы теплоэнергетики.	§ 41, 42,43
74	Контрольная работа № 5 по теме: «Термодинамика»	§ 41, 42, 43
	4. Электродинамика (50 ч)	
	4.1 Электрическое поле (13 ч)	
75	Предмет и задачи электродинамики. Электрическое взаимодействие. Закон сохранения электрическо-	§ 44
	го заряда.	
76	Закон Кулона.	§ 45
77	Напряженность и потенциал электростатического поля. Принцип суперпозиции электрических полей.	§ 46
78	Принцип суперпозиции электрических полей.	§ 47
79	Решение задач. Напряженность электрического поля	§ 44 -47.

80	Разность потенциалов	§ 48 - 49
81	Разность потенциалов	§ 48 - 49
82	Проводники и диэлектрики в электрическом поле.	§ 50
83	Электрическая емкость. Конденсатор.	§ 51
84	Решение задач. Конденсатор.	§ 51
85	Энергия электрического поля.	§ 52,53
86	Решение задач. Энергия электрического поля.	§ 52,53
87	Контрольная работа № 6 по теме: «Электростатика»	§ 44-53
	4.2 Постоянный электрический ток (10ч)	
88	Постоянный электрический ток. Электродвижущая сила (ЭДС).	§ 54
89	Лабораторная работа №4.	§ 54
	«Измерение силы тока и напряжения»	
90	Решение задач. Электродвижущая сила (ЭДС).	§ 54
91	Закон Ома для полной электрической цепи.	§ 55, 56
92	Закон Ома для полной электрической цепи.	§ 56
93	Решение задач. Закон Ома для полной электрической цепи.	§ 56
94	Лабораторная работа №5 «Измерение ЭДС и внутреннего сопротивления источника тока»	§ 56
95	Решение задач. Закон Ома для полной электрической цепи.	§ 57
96	Решение задач. Закон Ома для полной электрической цепи.	§ 58
97	Решение задач. Закон Ома для полной электрической цепи.	§ 58

4.3 Электрический ток в различных средах (8 ч).		
98	Электрический ток в металлах. Сверхпроводимость.	§ 71, 72
99	Электрический ток в растворах и расплавах электролитов. Закон электролиза.	§ 73
100	Электрический ток в растворах и расплавах электролитов. Закон электролиза. Решение задач.	§ 73
101	Электрический ток в газах. Плазма.	§ 74
102	Электрический ток в вакууме.	§ 75, 76
103	Электрический ток в полупроводниках.	§ 77
104	Полупроводниковые приборы.	§ 78, 79
105	Контрольная работа № 7 по теме: «Постоянный электрический ток»	§ 77-79
	4.4 Магнитное поле (9ч)	
106	Магнитное поле. Вектор магнитной индукции. Действие магнитного поля на проводник с током. Сила Ампера.	§ 59
107	Принцип суперпозиции магнитных полей. Магнитное поле проводника с током.	§ 60
108	Решение задач. Сила Ампера.	§ 60
109	Решение задач. Сила Ампера	§ 60
110	Действие магнитного поля на движущуюся заряженную частицу. Сила Лоренца.	§ 61
111	Решение задач. Сила Лоренца.	§ 61

112	Магнитные свойства вещества.	§ 62
113	Решение задач. Магнитные свойства вещества.	§ 63
114	Решение задач. Магнитные свойства вещества.	§ 64
	4.5 Электромагнитная индукция (10 ч)	ı
115	Поток вектора магнитной индукции. Явление электромагнитной индукции. Закон электромагнитной индукции. ЭДС индукции в движущихся проводниках.	§ 65
116	Закон электромагнитной индукции. ЭДС индукции в движущихся проводниках. Решение задач.	§ 65
117	Правило Ленца.	§ 66
118	Решение задач. Самоиндукция. Индуктивность.	§ 67
119	Решение задач. Самоиндукция. Индуктивность.	§ 65-67
120	Энергия электромагнитного поля.	§ 68
121	Решение задач. Энергия электромагнитного поля	§ 69
122	Решение задач. Энергия электромагнитного поля	§ 70
123	Решение задач. Энергия электромагнитного поля	§ 70
124	Контрольная работа № 8 по теме: «Электромагнитное поле»	§ 59 -70
	6. Повторение (12 ч)	
	1 , , ,	

125	Кинематические характеристики механического движения. Модели тел и движений.	§ 7
126	Решение задач. Кинематические характеристики механического движения.	§ 7
127	Решение задач по теме законы Ньютона.	§ 9
128	Решение задач по теме законы Ньютона.	§ 9
129	Решение задач. Уравнение Менделеева-Клапейрона, выражение для внутренней энергии.	§ 23
130	Решение задач. Уравнение Менделеева-Клапейрона, выражение для внутренней энергии.	§ 23
131	Первый закон термодинамики. Решение задач.	§ 35
132	Первый закон термодинамики. Решение задач.	§ 35
133	Закон Ома для полной электрической цепи.	§ 55, 56
134	Закон Ома для полной электрической цепи.	§ 55, 56
135	Поток вектора магнитной индукции. Явление электромагнитной индукции. Закон электромагнитной индукции. ЭДС индукции в движущихся проводниках.	§ 65
136	Повторительно-обобщающий урок	§ 1-79